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AN EXPLORATORY STUDY OF THE APPLICATION OF GENERALIZED IIVESE

TO ILS ESTIMATION OF OVERIDENTIFIED EQUWTIONS IN LINEAR MODELS

by

J. Daniel Khazzoom

Abstract

-In this paper, we propose a procedure based on the use of the Moore-

Penrose inverse of matrices for deriving unique Indirect Least Squares

(ILS) estimates of the structural parameters in the overidentified case.

The procedure makes use of all reduced form estimates in deriving the

unique structural estimates. The estimator is shown to be consistent.

We derive the relationship between this Two-Stage Least Squares (2SLS)

estimator and Instrumental-Variables (I.V.) eatimators. Wp also derive

the aiymptotic distrAbution of the proposed estimator. The results of

sampling experiments are summarized.
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1. ILS (Indirect Least Squares) Set-up

Let the operation of an economic system be cnaracterized by

Y = Y P + X C + U
(i)(Txm) (Txm) (nun) (TxG) (Gxm) (Txm)

Y, X, and U are matrices of *idogenous, predetermined and random vari-

ables, respectively; B and CP are parameter matrices of O's and y's,

respectively. (Throughout, we follow essentially the notations sythesizod

by Dhrymes (3, pp. 172-200, 279-365] and Rao and Mitra 18, pp. 12-17].)

The dependent variable yt, is explained by mi < m current endogenous

variables and Gi < G predetermined variables. We make the usual assump-

tions on the random matrix U. The reduced form of (1.1) is defined as

(1.2) Y = XC(I-B) + U(I-B) - = XH + V

By appropriately partitioning II ( indicates estimates), postmultiplying
A

11 by the m x 1 column [l, -O.1, 0' and rearranging terms, we have

the usual recursive system for the estimated parameters of the first equa-

tion in (1.2):

am G.. .i GlI

It is well known that (1.3) has a unique solution in the just-identified case

(that is, when HG*ml is non-singular). In the overidentified case (G *m l , and

11 has full column rank) there is more than one way (although a finiteG ml
number of ways) for consistently estimating the structural parameters.

Because of the difficulty in choosing among these alternative ways, ILS
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has fallen into practical disuse. Other limited information estimators

which were developed in the meantime compromise in various ways between

the estimates in the overidentified case. The procedure I propose in this

paper is a compromise in the same nature as the 2SLS. We use the Moore-

Penrose (MP) generalized inverse to derive unique ILS estimates of the

structural parameters in the overidentified case. For a discussion of the

HP inverse, see [8, pp. 50-55]. Briefly, if D is an m x n matrix, its

MP inverse, denoted by D + , is an n x m matrix which satisfies the

following four conditions: i) DD+D = D; ii) D+DD + = D+;

iii) (DD+)' = DD+; iv) (D+D)' = DD where ' denotes conjugate transpose

and where the inner product is defined with respect to the identity matrix.

D+  is unique and has the same rank as D. A matrix that satisfies (i)

only is called a g-inverse and usually denoted by D- .

2. ILS Estimates Using Moore-Penrose Inverse

Denote equation (1.3) as

A^

(2.1) D6.1 =r .

Since D has full column rank, += (,I 1)- B . If we use the MP inverse

to solve (2.1), we get

(2.2) 1 D -D 1

A

The vector 6 is unique and has the property that it is minimum

(Euclidean) norm least squares solution of (2.1). Using the fact that

+= (Df)-I, it follows that

A+ 0 ATG*l= mno I

G
-] Glml (]Gml) +
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which shows that 6 in (2.2) coincides with the recursive solution of
AA

(1.3), when the MP inverse is used to solve for and then
It can be shown that . is a consistent estimator of 6 To

It anbeshon hof6 6.1 T

see this, note that the elements of D are consistent estimates of the

corresponding elements in the true D. Since D'D is non-singular, it

follows that

(2.3) pli .1 = (D'D)-h'I -- Dr1 = 6.1

The last equality follows from the fact that in the population the system

D6.1 =r is known to be a consistent set of equations.

3. Relation of ILS to 2SLS and I.V. Estimator; Asymptotic Distribution

Writing in full the first equation in (1.1), we have

A A(3.1) y.I = l.l+ x1Y.1 + Ul = XII + XIT.I + U 1l + VI.

A.1, V.l consist of the 2nd,...,(ml+l)st column of H, and V,

respectively. Noting

AA

(3.2) (X.1' X1 ) = XD

the 2SLS solution of (3.1) is easily seen to be

(3.3) A ( )(y)1 ( 6 )'y 1  D D I'(x'x)))- G,(x'x) . ,6.1 XD X XD.

where we made use of the fact that y.1 =Xw.1 + V.1 and X'v. =0.

Observe (3.3) is the minimum norm least squares solution of

(3.4) X.l XA .

By comparing (2.2) with (3.3) it is evident how the 2SLS and ILS compro-

mise between the various estimates in the overidentified case.
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Both procedures solve for the minimum norm least squares estimator. The

difference is In the definition of the norm. In the 2SLS case, the

(quadratic) norm in (3.3) is defined with respect to the moment matrix

of all the predetermined variables. In the ILS case, the norm is defined

with respect to the identity matrix. The two estimators coincide when

XIX is a scalar matrix, and similarly when the equation is Just iden-

tified (D is then square and non-singular). In light of (2.2) and (3.3),

it is straightforward to infer the asymptotic distribution of the

proposed ILS estimator from the asymptotic distribution of the 2SLS esti-

mator. For 2SLS, we have (see Dhrymes [3, pp. 190-192])

(3.5) .1 .1 N(O, a1 1 plim Ot)

where

(3.6) I  ( x=

The subscript [X ]- indicates the matrix with respect to which the

inner product is defined. For ILS, we have

.1

t T XI LX 1  1~~

Tjx 2

In order to arrive at *t we simply changed the norm in (3.6) so that

inner product of B+ is now defined with respect to the identity matrix

rather than (x'X). Equation (3.9) can also be derived directly.
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It is also useful to look at the results derived so far from the

point of view of I.V. estimation. If we choose the instrumental variables

(3.10) P= x(x,x)-xz 1

Q = X(X,X)F-

and rewrite (3.6) and (3.9) as

(3.11) ¢t= LT I _T T '

FQ 31+  Q z,<,l +
(3. 12) t LT J T LTJ

we see that the righthand side of (3.11) and (3.12) has the standard form

of the covariance ratrix whose probability limit appears in the asymptotic

distribution of I.V. estimatora (except that in (3.12) we have HP inverse

instead of the conventional inverse). This is uot a surprising result,

since it is well known that 2SLS and ILS have an I.V. interpretation,

with instruments P and Q, rdspectively, as in (3.10). Where (3.12)

departs from conventional results, however, is in the number of instrumen-

t l variables.' Q has G columns where G > mI + GI, whereas it is

standard to require the number of instrumental variables to be the same

as the number of explanatory variables in the equation (otherwise the

matrix to be inverted will not be square in the first place). Dhrymes

[3, p. 365], for example, points out that when G > mi + Gi, the ILS will

fail to yield unique estimators because of what may be interpreted as the

attempt to use "too many" instrumental variables in estimating the struc-

tural parameters. The results we derived in this section indicate that

"too mary" instruments is not really a hindrance for deriving unique I.V.
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estimates, if we are willing to work with the MP inverse. (Note

that if instead of P as defined in (3.10), we choose P = X(X'X)-I'x

and substitute in (3.14) below for this alternative choice of P, we

would get (3.4), which we already know yields the 2SLS estimator when MP

inverse is used to solve it).

In an asymptotic efficiency sense, the 2SLS dominates the class of I.V.

estimators whose instruments belong to the subspace spanned by the prede-

terminc. variables of the system. For the two covariance matrices (3.11)

and (3.12), the relative efficiency (deleting the division of T),

(3 13) t -4 t = +Q [I-P(P P)- ' ] '+  ,

is a p.s.d. matrix, since l-P(P'P) -' is symmetric idempotent. To

summarize: the ILS estimator proposed in this paper, as well as the 2SLS

estimator in the overidentified case, achieves a compromise among the

various etimates in the overidentified case by finding the (.nique) minimum

norm least squares solution for 6.1 in

(3.14) P'Y., P'Z 1 .1

(3.15) Q'Y. = Q'ZI .1 2

where P and Q are defined in (3.10). The solution of (3.14) yields

the 2SLS estimator and the solution of (3.15) yields the iLS estimator.

In both cases, the solutions have the same structure; they differ in the

definition of the norm.
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4. Design of the Monte Carlo Experiments

The objective of the experiments is (1) to gather evidence on the

relative performance of ILS vs. 2SLS and Limited Information Maximum

Likelihood (LIML) estimator-the two most commonly used single-equation

consistent estimators; (2) to test the hypothesis that the bins for the

ILS estimator does not depend on (a) the size of the covariance matrix

Z = (aij) of the vector (utlUt 2 ... ,utm)', (b) the sparseness of Z,

and (c) the sample size; (3) to test the hypotheses that the relative

performance of IIS does not depend on the factors listed in (a) to (c).

For the purpose of this paper, I chose a structure from one of the

experiments reported by Cragg [2]. (Initially, I estimated several runs

using the struzture estimated by Wagner [11], but because of the special

nature of the structure used by Wagner--damped difference equations

dominated by a trend factor-I did not think the results would be of

general interest.) The rationale for using this particular structure was

to permit a comparison of ILS with 2SLS and LIML in a model for which the

last two estimators are known to have performed very well. The structure

is the following:

yt = .89Y2 t+.1 6y3t +44-.Oxlt +.74x2 t+.13x3t +Ult

Y2t = .7y it +62.00x t +.96x3t +.70x5t +. 06 x t+u2t

Y3 = .29Y2 +4o.00xl +.llx4 +.53x 5 +.56x6  +u'.
t 1; t t t t -

where xl is a vector of l's. In conjimccion with El (see below),
t1

this is structure 8 reported in Cragg [2, p. 92]. In all experiments, we

estimated the parameters of the first equation only, using ILS, 2SLS and

LIML. An ecperiment consisted of generating 100 samples of Size T = 60,
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40, and 20 observations. The predetermined variables are truly exogenous

and, except for the yector of constants Xl, are uniformly and indepen-

dently distributed random numbers with values in f-100,100]. The values

of the exogenous variables were fixed for repeated samples of the same

size. The sample correlation matrices for the exogenous Variables used in

the experiments are the following:

T=6o T=4O T=20

x2 x3  x 4  x5 X 6  x2 X3  x X 5  X6  X2  x 3  x4  x5  x6

X3.23 .16 1 .

x4,.10 -.05 -.0 -.33 -.02 -r.24

x5 .02 .29 -.02 .45 -.08 -.16 .51 .33 -.19

x6 .02 .03 .01 .02 .29 .02 .15 .19 .09 .07 -.34 .15

x7 .03 -.13 -.10 .05 -.13 .00 -.0 .19 -,07 -.02 L-.01 -.19 .18 -.4,3 -.43

Liie structural disturbances were generated from mutually independent and

normally distributed (3-dimensional) vectors with zero mean and the follow-

ing X's:

_38.6o 1 38.60
Z = 5.92 36.68 j 0 36.68

1,4.8o 2.98 4o.64 0 4o.64

386.0 1 -386.00

- 59.2 366.8 1 Zl0 0 366.8
L-148 .0 29.8 W.06.L 0 4o6.41

In conjunction with each one of these Z's, we carried out three experi-

ments with T=60, 40, 20, for a total of 12 experiments. Several algo-

rithms are available in the literature for computing the MP inverse. I

used Johnson and Chou's algorithm [5]. As a check, I csp'ulated D+D
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'..
for several of the D we ccmputed. The results were identical to the

identity matrix for at least the first six decimals.

The folloving meazures of the relative performance were calculated

for the estimated parameters (13 arithmetic mean, 2 (2) mediar, (3) standard

deviation, (4) root mean square error,2 (5) number of the estimates withii,

± 10% of the true parameter, and (6) inax'Imu absolute deviation of the

estimates from the parameters. T4e merits and limitations of several of

these measures have been discussed by several authors. See, for example,

Summers [9, pp. 12-1-3]; Quandt [, pp. 96-97]; and Christ [1, pp. 475-476].

The consistent estimator of 0!I provides at the same time what might

be viewed as a "non-predictive" measure of the overall goodness of the

estimates. As a second measure of the overall goodness of the estimates,

I forecasted y1  at (1) the sample mean value of the exogenous variables

and (2) at the sample mean value of the exogenous variable plus one

standard deviation. Y2 and Y3 were fixed at their theoretical value

for the forecasts. For each experiment I calculated the mean and median

of the forecasted yI. As a measure of the magnitude of the overall bias
-.k

of the estimates, I also calculated the norm, 16.1 - 6.,' here

6.1 = (.89 .16 44.00 .74 .13), and - is the vector of the average

of the estimates derived from the kt h estimator. A similar norm was

calculated for the median.

Finally, for inferential purposes, one normally needs to attach to the

*
estimate a of a a measure of the reliability of the estimate. For

LIML and 2SLS, the measure traditionally used is a , where [a ]2 isis

a consistent estimate of the variance of a in the asymptotic distri-
*

bution of a . The idea is that for a relatively large sample, the

9



distribution of T (a -a)/% is adequately approximated by a normal

distribution with zero mean and unit variance. I calculated V (a -a)/a*

for all ILS estimates, and used the Kolmogorov-Smirnov test to test for

significant departure from normality. Similar results were calculated

for 2SLS and LIMEL for comparative purposes.

For space limitations, I will not go into the detail of the results,

but give a summary of the results in the next section. (Details will be

made available to interested readers upon request.)

5. Sumary of the Results

Relative Performance

ILS vs. 2SLS: ILS bias tends to be smaller than 2SLS bias. Esti-

mates derived from the two procedures do not appear to differ significantly

in concentration or dispersion. The overall goodness of the estimates

favors ILS over 2SLS.

ILS vs. LIML: ILS bias tends to be larger than LIML bias. (But the

norm of the bias shows the performance evenly divided 1-c.ween the two pro-

cedures.) ILS estimates tend to be more concentrated than LIML estimates.

The overall goodness of the estimates favors ILS when a non-predictive

measure is used; the picture is mixed when a predictive measure is used. ?

Effect of Sample Size, Size of Z and Sparseness of E on ILS Bias

The evidence is generally inconsistent with the hypotheses that ILS

bias does not depend on the sample size, the size of Z, and the sparse-

ness of E. There is some indication, however, of an interaction between

size and sparseness. ILS bias does tend to decrease with sparseness when

the size of E is large, but not significan ly so when the size of E is

10



small to begin with. More .reaearch. on the interaction between the size

and sparseness of Z .ma' yield useful results.

Effect of S§ngle'Size, Size of Z and Sparseness of r on ILS Relative
Performance

The evidence is generally not inconsistent with the hypotheses that

the relative performance of ILS does not depend on the sample size, the

size and sparseness of Z.

Tests of the Reliability of ILS Estimates

i) As the sample size increases, the approximation of the distribu-

tion of (c*-c)/a* by the asymptotic distribution gets better. This

is true of the ILS, as well as 2SLS and LIML.

ii) For all cases considered, LIML comes out first in the total as

well as in each sample size) followed by ILS and 2SLS. (A similar result

was noted by Cragg 12, pp. 101-102] for LIML compared with other consistent

estimators (except Full Information Maximum Likelihood (FIML) estimator).)

iii) There is evidence that the adequacy of the normal approximation

may depend on the size of Z. With T = 20 or 40, the approximation appears

to work better when the size of Z is smaller. (Cragg [2, pp. 105-106]

found a similar tendency for the "t-ratio" of the consistent estimates he

examined.) Generally, the same remarks apply to LIML and 2SLS.

iv) The adequacy of the normal approximation does not appear to be

influenced by whether or not the structural disturbances are independent.

For ILS (and LIML) this was the case regardless of sample size. For 2SLS,

this was the case with T = 40 and 60.
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6. Concludig Remarks,

A referee thoughtfully observed that the attraction of the proposed

method if not so much in its possibly superior saJ1 sample behavior, but

rather in the possibility of obtaining estimates; of the structural para-

meters without recourse to the data once the reduced form is estimated.

The reduced form estimate is all the real world has to give. The struc-

tural constraints ar the result of theory or intuition. The method

proposed "keeps these two sources of 'information' nicely apart. It is

one step further on the way to unscrambling the curious mixture of induc-

tion and deduction which is so characteristic of applied econometrics."

As a follow-up this work will be extended to examine erc'ensively the

sensitivity of the estimates to alternative specificat.on of the structural

constraints and to deal with other aspects of the Monte Carlo experiments

that I have not dealt with nt this stage (including tba effect of multi-

collinearity among the exogenous variables).

A second extension relates to the instrumental variable aspect, which

I only touched on in this paper. The use of MP inverse opeas the way to a

family of I.V. estimators in the overidentified case, which have the same

structure but diffe, in the definition of the norm. For example, by pre-

multiplying both sides of (3.15) by X'X, we derive the equation of

another I.V. estimator (different from ILS) witl X as the matrix of

instruments. (We have also seen that in the overidentified case 2SLS can

be derived by using X(X'X)-X' instead of the traditional X(X'X)-x'Z1,

as the matrix of instruments, if we are willing to work with the MP inverse.)

The behavior of several I.V. estimators in the overidentified case and

the question of what constitutes an appropriate norm will be investigated.
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Footniotes

-IRecentlyF Svmy and Holmes I10] and Fisher and Wadycki 14] used g-inverse
to generalize 2SLS, k class, and 3SLS estimators so that they can be
applied to large econometric models when the sample size is smaller than
the ni=ber of predetermined variables. Unfortunately, the procedure
proposed by the authors does not generalize these estimators as claimed.
When G > T and rank (1) = T, these estimators simply to not exist.
When X has full row rank, X- will (minimally) satisfy conditions (i)-
(iii) in the text. 7ts general expression is X- = (X'X)-X', (see [8],
Theorem 3.2.2, p. 49). It follows that XX- = I, since X('X)-X'^ in
invariant for any choice of (X'X)-. Hence, the general solution R for
the systematic part of (.2--nsmely ft X XY + (I-X-X)W, where W is
an arbitrary G x m matrix-is also the general expression for the least
quares estimates of the reduced form, which will always satisfy
1= X(X'X)-X'Y = Y, when X has full row rank. In the Jargon of 2SLS,

there is Just no way in which the matrix of eudogenous explanatory vari-
ables that appear in theequaion of interest can be purged of its stochas-
tic component, because Y = X11 Y. For a similar reason, the k-class and
3SLS estimators do not exist. The exception occurs when perfect multi-
collinearity exists among the predetermined variables such that rank
(X) < T. But this is not the general case of large econometric models, as
Fisher and Wadycki 14, p. 463) recognize.

2Some people may question the validity of this measure, unless it is known

that the corresponding moment in the population exists. Recent results by
Mariano [6] show the 2SLS estimates possess the first two moments for the
models we estimted. In light of (2.2) and (3.3), it is reasonable to
infer the same is true of the I7S estimates we derived for the same models.
The results in the literature do not show IML possesses a first-order
moment. Hence for ILS and 2SLS I used the mean and root mean square error
along with the rest of the measures, but for LIML I confined myself to the
non-parametric measures.

Slt is interesting to note the performance when the covariance is Ei.

This is structure 8 taken from Cragg [2) and for which 2SLS and IAMNa esti-
mates performed well in Cragg's experiments. ILS does better than 2SLS
by every summary measure. In comparison with LIML, ILS bias is larger
than LIML bias (but the norm of ILS bias is smaller in two out of three
cases). ILS estimates tend to be more concentrated around the parameters
than LIML estimates. To put these results in perspective, I also compared
2SLS and LIML. 2SLS bias is larger than LIML bias; so is the norm of the
bias. Cragg's results showed a slight edge in favor of 2SLS [2, p. 96,

experiment 12]. The two measures of concentration and dispersion do not
agree on the relative performance of 2SLS vs. LIML.
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